Python金融大数据分析
- 资料大王PDF
-
0 次阅读
-
0 次下载
-
2024-10-20 22:47:53
微信
赏
支付宝
文档简介:
目 录
版权信息
版权声明
内容提要
作者介绍
O’Reilly Media,Inc.介绍
前言
本书的惯例
代码示例的使用
联系方式
Safari® 在线图书
致谢
第1部分 Python与金融
第1章 为什么将Python用于金融
1.1 Python 是什么
1.1.1 Python简史
1.1.2 Python生态系统
1.1.3 Python用户谱系
1.1.4 科学栈
1.2 金融中的科技
1.2.1 科技开销
1.2.2 作为业务引擎的科技
1.2.3 作为进入门槛的科技和人才
1.2.4 不断提高的速度、频率、数据量
1.2.5 实时分析的兴起
1.3 用于金融的Python
1.3.1 金融和Python语法
1.3.2 Python的效率和生产率
1.3.3 从原型化到生产
1.4 结语
1.5 延伸阅读
第2章 基础架构和工具
2.1 Python部署
2.1.1 Anaconda
2.1.2 Python Quant Platform
2.1.3 工具
2.1.4 Python
2.1.5 IPython
2.1.6 Spyder
2.2 结语
2.3 延伸阅读
第3章 入门示例
3.1 隐含波动率
3.2 蒙特卡洛模拟
3.2.1 纯Python
3.2.2 用NumPy向量化
3.2.3 利用对数欧拉方法实现全向量化
3.2.4 图形化分析
3.2.5 技术分析
3.3 结语
3.4 延伸阅读
第2部分 金融分析和开发
第4章 数据类型和结构
4.1 基本数据类型
4.1.1 整数
4.1.2 浮点数
4.1.3 字符串
4.2 基本数据结构
4.2.1 元组
4.2.2 列表
4.2.3 离题:控制结构
4.2.4 离题:函数式编程
4.2.5 字典
4.2.6 集合
4.3 NumPy数据结构
4.3.1 用Python列表形成数组
4.3.2 常规NumPy数组
4.3.3 结构数组
4.4 代码向量化
4.4.1 基本向量化
4.5 内存布局
4.6 结语
4.7 延伸阅读
第5章 数据可视化
5.1 二维绘图
5.1.1 一维数据集
5.1.2 二维数据集
5.1.3 其他绘图样式
5.2 金融学图表
5.3 3D绘图
5.4 结语
5.5 延伸阅读
第6章 金融时间序列
6.1 pandas基础
6.1.1 使用DataFrame类的第一步
6.1.2 使用DataFrame类的第二步
6.1.3 基本分析
6.1.4 Series类
6.1.5 GroupBy操作
......
评论
发表评论